Technology
Proving ( x^3 - 6x 6 ) When ( x 2^{2/3} cdot 2^{1/3} ): A Step-by-Step Guide
Proving ( x^3 - 6x 6 ) When ( x 2^{2/3} cdot 2^{1/3} ): A Step-by-Step Guide
To prove that ( x^3 - 6x 6 ) when ( x 2^{2/3} cdot 2^{1/3} ), we can start by calculating ( x^3 ) and ( 6x ) for the given value of ( x ).
The Given Value of ( x )
Let ( y 2^{1/3} ). Then we can rewrite ( x ) as:
Expression for ( x )
( x y^2 cdot y )
Calculating ( x^3 )
We start by calculating ( x^3 ) using the expression for ( x ).
Step-by-Step Calculation
First, let's take a look at ( x^3 )( x^3 y^2 cdot y^3 ).
Using the binomial expansion, we get:
( xy^3 x^3 - 3x^2y 3xy^2 - y^3 )
Substituting ( x y^2 ) and ( y y ) into the equation:
( x^3 y^2 cdot y - 3(y^2)^2 cdot y 3(y^2) cdot y^2 - y^3 )
This simplifies to:
( x^3 y^3 3y^3 - 3y^3 - y^3 y^6 - 3y^5 3y^4 - y^3 )
Since ( y^3 2 ), we can substitute ( y^6 (y^3)^2 4 ):
( x^3 4 - 3y^5 3y^4 - 2 2 - 3y^5 3y^4 )
Expressing ( y^4 ) and ( y^5 )
Next, let's express ( y^4 )( y^4 y^3 cdot y 2y )
And ( y^5 )( y^5 y^3 cdot y^2 2y^2 )
Substituting these into our expression for ( x^3 ):
( x^3 2 - 3(2y^2) 3(2y) - 2 6 - 6y^2 - 6y )
Notice that:
( x y^2 cdot y implies x^3 6 - 6x )
Thus, we have shown that:
( x^3 - 6x 6 )
Verification
To verify, we can apply the formula ( ab^3 a^3 b^3 3ab^2 ) after cubing both sides of the given value of ( x ), and then multiply by 6. This will give us the values of ( x^3 ) and ( 6x ), and we can find ( x^3 - 6x ) and see if it equals 6.
You can do the calculation yourself to verify the result.
Conclusion
Thus, we have proven that ( x^3 - 6x 6 ) when ( x 2^{2/3} cdot 2^{1/3} ).